
Exploring Minimax and Temporal Difference
Learning for Connect Four

Nick Abegg nicholas.abegg@stvincent.edu

Jake Buhite jake.buhite@stvincent.edu

I. PROBLEM SUMMARY

Connect Four is a simple two-player game that involves
each player taking turns to place a disc onto a board. The
objective for each player is to be the first to have four of their
own disc in a row horizontally, vertically, or diagonally. Often,
a player’s strategy involves balancing the formation of four-
in-a-row while simultaneously obstructing their opponent’s
efforts to achieve the same. The game’s simplicity, turn-based
nature, and immense depth make it particularly suitable for
the implementation of intelligent agents such as minimax as
well as Temporal Difference Learning (TDL) agents.

II. LITERATURE OVERVIEW

A. Connect Four Agents

1) Minimax Agent: Minimax with alpha-beta pruning is
particularly well suited for handling the game of Connect Four,
capable of significantly reducing the time it takes for the agent
to decide on a move compared to a normal minimax agent.
alpha-beta Pruning enables minimax to discard certain nodes
that it knows not to be useful, thus allowing it to explore the
game state much faster and at a much deeper depth [1].

2) TDL Agent: Connect Four gameplay can also benefit
from the use of learning agents, such as a Temporal Difference
Learning (TDL) agent. A TDL agent, coupled with n-tuple
networks, is capable of self-learning in playing Connect Four,
eventually achieving the potential to beat an optimal minimax
agent [2]. The immense potential of TDL agents becomes
evident when considering that these agents, relying solely on
self-play and the rules of the game for reference, demonstrate
great learning capabilities.

B. Real World Applications

1) Minimax Application: In real-world applications, mini-
max proves valuable in minimizing manufacturing costs for

equipment and maximizing the effectiveness of radiother-
apy treatment against tumors while minimizing damage to
healthy tissue [3]. Another application of minimax involves
calculating the shortest travel time for a delivery person,
taking into account real road maps and traffic information [4].
Additionally, TDL has been applied to other games such as
Backgammon, being capable of learning to play from scratch
at an intermediate level [5].

2) TDL Applicaiton: The flexibility of TDL in indepen-
dently discovering optimal solutions makes it applicable to
a variety of real-world scenarios. One particular example is
utilizing TDL to manage a wide-area network to handle delays
in packet transit as well as deciding the most optimal route
for network traffic. This TDL agent has been demonstrated
to better preserve network stability compared to conventional
methods [6].

III. ALGORITHM DESCRIPTION

Although minimax and TDL were developed separately,
both utilize the same Connect Four structure to facilitate the
game and its rules. Minimax is a game-playing algorithm
specifically designed for zero-sum games, such as Connect
Four. Unlike minimax, which traverses the Connect Four state
space to find the most optimal decision, TDL is a reinforce-
ment learning algorithm in which an agent is trained to learn
to make decisions over time, learning from its experience to
improve its play.

A. Minimax

In Connect Four, minimax, coupled with alpha-beta pruning,
efficiently calculates its next move. Additionally, it incorpo-
rates a depth limit to control the time the agent spends con-
sidering its next move. While determining its potential moves,
minimax recursively analyzes possible moves at each depth,
transitioning between minimizing and maximizing strategies.
When minimax has reached its depth limit or the goal state

1



is reached, it uses a utility function to generate a value
for the resulting game state. The utility function considers
various factors of the board, including the number of discs
in a row for each player and potential win conditions. These
factors generate scores that are accumulated to determine
whether the game state is favorable for the minimax agent.
The higher the value, the more favorable the game state is. By
alternating between the minimum and maximum node values
while traversing the game tree, minimax is able to account for
turns in which the opponent makes their most optimal move
and return the best move.

1) Pseudocode Minimax:

function MINIMAX(a, b, d)

return MAXVAL(a, b, d).second

function MAXVAL(a, b, d)

if d is 0 or game is terminal

return UTILITY(d)

maxV = -inf

actions = VALIDACTIONS()

bestMove = actions[0]

for each move in actions

ADDMOVE(move)

v = MINVAL(a, b, d - 1).first

maxV = max(maxV, v)

if (v > maxV)

bestMove = move

a = max(a, maxV)

if (a >= b) break

return maxV, bestMove

function MINVAL(int a, int b, int d)

if d is 0 or game is terminal

return UTILITY(d)

minV = +inf

actions = VALIDACTIONS()

bestMove = actions[0]

for each move in actions

ADDMOVE(move)

v = MAXVAL(a, b, d - 1).first

minV = min(minV, v)

if (v < minV)

minV = v

bestMove = move

b = min(b, minV)

if (a >= b) break

return minV, bestMove

2) Theoretical Complexity Analysis: The expected time com-
plexity of minimax, with alpha-beta pruning and an optimal move

order, is O
(
b

d
2

)
, where b denotes the branching factor, and d is

the depth of the search tree. However, given that the algorithm may
not have the optimal move ordering, the time complexity is likely
between O

(
b

d
2

)
and O(bd). The memory complexity of minimax

with alpha-beta pruning is dependent on the depth of the recursion for
the minimax algorithm, with the expected complexity being O(bd)

[7].
3) Heuristic Analysis: The heuristic utilized with the Connect

Four minimax agent evaluates the current state of the game board by
assessing consecutive player or opponent pieces (known as threats)
in various orientations. Specifically, the heuristic assigns a score of
9999999 for an agent win and -9999999 for a player victory. Each
of these values is incremented or decreased to ensure that minimax
chooses moves that will differentiate moves based on the number of
turns it takes to reach the game state. If one winning state is closer to
the current board state than another, minimax will want to choose the
winning state that is closer and requires fewer moves. If the heuristic
discovers that the game is a tie, zero is returned. Otherwise, if the
utility function is called because the agent’s horizon has been reached,
the heuristic generates a score by incorporating various strategic
advantages, including three-in-a-row and two-in-a-row alignments.
To strengthen the heuristic, these consecutive pieces do not affect
the score unless an empty cell is detected for each missing piece
in the alignment. This enables minimax to differentiate between
genuine threats or advantageous moves and those that are useless
or disadvantageous. Three-in-a-rows with one empty cell are given
a score of 1000 and two-in-a-rows with two empty cells accruing a
score of 100. Once each is calculated separately, the opponent score
is subtracted from the agent’s score. Overall, this heuristic ensures
that minimax is efficiently choosing the most optimal move while
considering its limited perspective.

B. Temporal Difference Learning

The TDL algorithm involves training a Connect Four playing agent
to self-learn an effective decision-making policy through repeated
interactions with the Connect Four game. The agent maintains a
set of weights that are continuously adjusted as the agent adapts to
the learning process. Adjustments are made to its learning rate and
exploration rate over time, allowing the agent to fine-tune its strategy.

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)],

• V (st): The current estimated value of state st.
• α: The learning rate, controlling the step size of updates and

influencing how quickly the agent adapts.
• rt+1: The immediate reward received after taking action at in

state st.
• γ: The discount factor, emphasizing the importance of future

rewards in the learning process.
• V (st+1): The estimated value of the next state st+1.

The term [rt+1 + γV (st+1) − V (st)] represents the Temporal
Difference (TD) error. This error quantifies the discrepancy between
the agent’s current estimate of the state’s value and the sum of the
immediate reward and the discounted estimated value of the next

2



state. The agent adjusts its estimate based on this TD error, gradually
improving its value estimates over successive interactions with the
game [8].

Specifically, the TDL implementation trained and used to play
Connect Four utilizes a set of n-tuples to efficiently extract relevant
information from the Connect Four board. To generate 70 n-tuples
of length 8, we utilized an approach proposed by Thill, Koch, and
Konen [2]. This method involves selecting a random cell, followed
by one of its neighbors, then one of the neighbors’ neighbors, and
so forth, until 8 positions are included in the tuple. This process
is iterated for all n-tuples. By using n-tuples, the number of weights
that are stored and loaded into memory changes from a potential four
trillion to only 70 tuples * 48 (four possible positions per element in
a tuple of length 8) = 4,587,520 weights. While training, the TDL
agent updates its weights using the temporal difference error signal.
Furthermore, the agent continuously decreases its learning rate α

and exploration factor ϵ throughout the training process to maintain
a balanced trade-off between exploration and exploitation.

1) Psuedocode Train Connect Four TDL Agent:

function TRAINTDL()

agent1 = TDLAGENT()

agent2 = TDLAGENT()

games = 0

evalCheckpoint = 20000

previousScores[2] = {}

while no convergence:

set state to TRAIN

games++

while games % evalCheckpoint != 0

RESETGAME()

PLAYGAME()

agent1.NEWALPHA()

agent2.NEWALPHA()

games++

if games % 1000000 == 0:

SAVEAGENT(agent1)

SAVEAGENT(agent2)

set state to EVAL

PRINT("Alpha ", agent1.alpha)

PRINT("Epsilon ", agent1.epsilon)

score = AGENTEVAL()

if score >= TARGET and

score <= previousScores[0] and

score <= previousScores[1]

// Training complete

SAVEAGENT(agent1)

SAVEAGENT(agent2)

return

previousScores[1] = previousScores[0]

prevScoreScores[0] = score

C. Example Connect Four Games

Fig. 1. 6x7 Connect Four AI vs AI

IV. TESTING & DATA

We conducted two separate experiments on the minimax algo-
rithm in which we recorded the runtime of the algorithm and the
heap memory allocation with varying board dimensions. Both tests
involved two minimax agents playing a game to completion. The test
consisted of thirteen iterations, with each dimension increasing by
two each iteration, starting at a standard 6x7 board and incriminating
to 30x31. The depth of the minimax algorithim for all of the test was
set to six.

A. Minimax Runtime Test

To conduct the runtime test, we utilized the chrono header in C++
to record the total execution time of a full Connect Four game, for
each of the board sizes.

B. Minimax Memory Test

We opted to use Valgrind to conduct our memory test. Valgrind
is a memory profiling tool that allows for a consistent means of
recording the memory allocations of our algorithm. To run the test
on each board size we constructed a Ubuntu virtual machine as well
as composing a bash script which executes the Valgrind test on the
program with the different board sizes. The specific memory metric
we measured was total bytes allocated in the heap.

C. Minimax Test Results

Below are our results for both the memory and runtime test. Note
that the x-axis labels only display every other label for sake of
clarity. Fig. 2 showcases the runtime results and Fig. 3 showcases
the memory results.

3



Fig. 2. Runtime with Varying Board Sizes

Fig. 3. Space Complexity with Varying Board Sizes

Specifically, for the 30x31 iteration, the total memory allocated
is roughly 1.1 GB. The total runtime of the 30x31 took roughly
19 minutes to execute. As the size of the board increased, the time
duration and memory usage increased sharply. Therefore, our findings
support the expected asymptotic runtime and space complexity of
minimax with alpha-beta pruning.

D. Temporal Difference Learning Results

The TDL agent was trained using another TDL agent. We eval-
uated the agent using another TDL agent every 20000 games. The
evaluation score was based on 100 games, where the TDL agent’s
evaluation score was updated depending on whether it won (+1), lost
(0), or tied (+0.5). The training ended when the agent’s evaluation
score was at or above 80 and less than its previous two scores.

V. CONCLUSION

In this paper we explore utilizing minimax with alpha-beta pruning
and TDL to approach the real world game of Connect Four. Minimax
was successfully implemented and was able to play the game on var-
ious board sizes. Increasing the board size resulted in an increase in
memory allocated to heap as well as an increase in total runtime. The

Fig. 4. TDL Agent Score Over X Games

data collected in our experiments indicated that our implementation
aligned with the theoretical asymptotic runtime and space complexity
of minimax with alpha-beta pruning.

While our TDL agent successfully completed its training, it is
not expected to perform well against agents using algorithms like
minimax, as it may lack the strategic depth or optimization achieved
by traditional search-based algorithms. Since the agent was not
exposed to other decision-making algorithms, it’s likely that it will
lack the proper weights to successfully defeat these agents. The
agent’s inability to consistently defeat the agents can be seen in the
sporadic fluctuations demonstrated in Fig. 4. Due to time constraints,
priority was directed to other essential aspects of our study. As a
result, the integration of minimax as a referee for our TDL agent
was not achievable within the scope of this research. Future work
can be conducted to integrate minimax into the TDL agent’s training
or evaluation and assess its impact.

Future work can be conducted on our minimax agent through
investigating how increasing the depth that minimax searches effects
the runtime and memory allocation. All of our experiments were
conducted utilizing only a depth of six, future testing a different
depths could yield additional information regarding our minimax
implementation’s ability.

REFERENCES

[1] R. Nasa, R. Didwania, S. Maji, and V. Kumar, “Alpha-Beta pruning
in Mini-Max algorithm –an optimized approach for a connect-4 game,”
2018.

[2] M. Thill, P. Koch, and W. Konen, “Reinforcement learning with n-tuples
on the game connect-4,” in PPSN’2012: 12th International Conference
on Parallel Problem Solving From Nature. unknown, Sep. 2012.

[3] M. Ehrgott, J. Ide, and A. Schöbel, “Minmax robustness for multi-
objective optimization problems,” Eur. J. Oper. Res., vol. 239, no. 1, pp.
17–31, Nov. 2014.

[4] J. Ochiai and H. Kanoh, “Solving Real-World delivery problem using
improved Max-Min ant system with local optimal solutions in wide
area road network,” International Journal of Artificial Intelligence &
Applications, vol. 5, no. 3, pp. 21–36, May 2014.

[5] G. Tesauro, “Practical issues in temporal difference learning,” in Rein-
forcement Learning. Boston, MA: Springer US, 1992, pp. 33–53.

4



[6] R. Yousefian and S. Kamalasadan, “Design and Real-Time implementa-
tion of optimal power system Wide-Area System-Centric controller based
on temporal difference learning,” IEEE Trans. Ind. Appl., vol. 52, no. 1,
pp. 395–406, 2016.

[7] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Pearson, 2009.

[8] F. Kunz, “An introduction to temporal difference learning,” 2013.

5


	Problem Summary
	Literature Overview
	Connect Four Agents
	Minimax Agent
	TDL Agent

	Real World Applications
	Minimax Application
	TDL Applicaiton


	Algorithm Description
	Minimax
	Pseudocode Minimax
	Theoretical Complexity Analysis
	Heuristic Analysis

	Temporal Difference Learning
	Psuedocode Train Connect Four TDL Agent

	Example Connect Four Games

	Testing & Data
	Minimax Runtime Test
	Minimax Memory Test
	Minimax Test Results
	Temporal Difference Learning Results

	Conclusion
	References

